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The objective of this paper is to present a feasible methodology that can achieve good
control performance of a dynamic beam structure system with time delay e!ect. To achieve
good control, a robust control called the modi"ed fuzzy sliding mode control (FSMC) with
phase shift method is introduced in this paper. Conventionally, the FSMC is easily designed
without precise system modelling and needs very little information for online calculation.
However, numerical simulation results show that increasing the time delay will reduce its
performance and the system will become unstable for a large time delay. The phase shift
method can assist the system in predicting the real status value as a compensation for time
delay e!ect. The results also show improvement on both the system's robustness and
stability. Furthermore, by comparing the maximum and average bending displacement
reduction rates of the beam structure, it is found that the FSMC with phase shift
compensation will improve the system's performance.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Beams are widely used in machines, architectural structures and aircrafts. The dynamic
behavior becomes more complicated due to edging operating environments and more
severe dynamic loads, for instance, high-speed aircrafts undergoing high attack angle or
turbulences. Therefore, proper active control is essential in order to ensure that the beam
structure stays will constrained. Besides, time delay always exists in feedback control loop
due to sensing or computation process. The problem of the system's dynamic stability,
which is caused by the time delay e!ect, has made the system more controllable and
unstable. Thus, the issue of how to enhance the system's robustness to the time delay e!ect is
worth further study. In order to obtain a proper control force exerted on the system, accurate
and optimal computation is necessary. However, it will cause time delay in the system in the
actuating force. The results will not match the system's need on real time. Therefore, the need
for a methodology that is simple in calculation and e!ective in control is critical.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



836 J.-J. LIAO AND Y. D. HWANG
A simple review of the structure control is stated as follows. Yao [1] introduced the
concept of active beam structure control. Yang [2] studied the optimal control for
structures under random dynamic loads. Abdel-Roham and Leipholz [3, 4] presented
a control law for active structure control, which is based on the optimal control theory. An
optimal closed-loop control law was designed for system tracking and regulating. However,
the optimal law will bring further time delay due to the time requirement of a large amount
of online calculation. Therefore, a methodology that can deal with time delay becomes the
key to the practical application of dynamic beam structure control.
In recent years, stabilization of systems with time delay has received considerable

attention. Several linear state feedback controllers have been proposed by Su [5], Chou [6]
and Shen [7]. The fundamental designs are based on (1) pole placement approach, (2)
Lyapunov approach, and (3) linear quadratic regulator approach. In these cases, time delay
can be the source of instability. Basharkhah and Yao [8] found that time delay could make
the control system lose its reliability. In 1985, Abdel-Roham [9] applied the pole placement
method to compensate for the system's time delay. Lo'pez-Almansa and Rodellar [10]
applied independent mode space control for predictive control, and their experiments
showed that when the number of sensors and actuators is less than the system's mode
number, the control system becomes unstable if the time delay e!ect is taken into account.
The dynamic behavior of a beam structure is represented by a fourth order partial

di!erential equation, which can be reduced to one ordinary di!erential equation via the
assumed mode method for simpli"cation purpose. However, it is noted that when
a distributed parameter system is approximated by a lumped parameter system, it will
induce further system uncertainties. Then the typical control law is no longer suitable for
this situation. In this paper, robust sliding mode control is proven to be an outstanding
control law to overcome the problem.
Hwang and Lin [11] presented a fuzzy controller designed with fuzzy sliding surface. This

method enjoys the advantages of simple calculation without delicate system modelling. In
this research, a fuzzy control is adopted so that chattering induced in sliding mode control
can be avoided. The integration of fuzzy algorithm with sliding mode control will secure
system stability by sliding mode control and will save a lot of calculation by fuzzy look-up
tables. Choi and Kim [12] o!ered a discrete time fuzzy sliding mode control method for
smart structures, and showed that the system can achieve its robustness and that chattering
was attenuated.
In this work, we focus on the application of the FSMC with phase shift method to deal

with a dynamic beam structure system with time delay e!ect. First, a control state-space
equation of a dynamic beam model is derived in section 2. Then, the FSMC is employed to
control the structure and phase shift compensation is used to compensate phase lag due to
time delay. Finally, simulation results are presented to compare with the results by passive
control and the FSMC without phase shift.

2. DYNAMIC MODEL OF A BEAM STRUCTURE

A dynamic beam structure under active control by a servomechanism is shown in
Figure 1. The dynamic load P moves along the longitudinal direction of the beam with
a velocity <. The dynamic equation is shown as follows:
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In the equation, � is the Dirac delta function and �� is the derivative. Control torqueM
�
is

exerted by the servomechanism, installed beneath the central portion of the beam at



Figure 1. Dynamic beam structure.
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a distance a measured from both end supports, and tends to balance the bending
phenomenon caused by the moving load.
When the servomechanism is in action, the actuator will increase or decrease the spring

displacement according to the control system's needs. The terms M
�
��(x!a)!

M
�
��(x!¸#a) are the control forces produced by the servomechanism.
This active control torque M

�
is designated as

M
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where S is the sti!ness of the spring, u(t) is the spring displacement caused by
servomechanism and �(t) is the displacement of the spring.
If u(t)"0 of equation (2), it is a passive structure control system. Using the assumed

mode method, equation (1) for the jth mode can be obtained as
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It can be rewritten as
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where>
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Since the high order modes of motion contribute little to bending displacements, only the
basic and the second modes are considered here. Then the equation of motion in the
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state-space form can be written as
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A continuous time multi-input}multi-output (MIMO) linear time-invariant system is
described by the following equation:
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The state-space equation as stated in equation (6) will be the dynamic model for control
simulation in this research.
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3. CONTROL METHODOLOGY

Based on the state-space equation (5) of the system model, the objective of control force
; is to control the output states ofX to be zero. In the control methodology, the "rst step is
to apply the FSMC. Then, the phase shift method is applied to rotate the state-space phase
co-ordinate to compensate for the phase lag due to the system's time delay.
The overall aim of the sliding mode control is to drive the system state from an initial

condition X (0) to the state-space origin as tPR. The jth component ;
�
( j"1, 2) of the

state feedback control vector; (t) is discontinuous at the jth switching surface, which is the
hyperplane M

�
passing through the state origin. The hyperplanes are de"ned as
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is de"ned by the following equation:
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is the derivative of 
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If 

�
"0 in equation (7), it represents the hyperplane. For the sliding mode control,

a hitting process is taken to hit the system trajectory into the sliding plane. Then, based on
the Routh}Hurwitz criterion for system stability, 


�

�
�
(0, the system trajectory will slide

along the plane and gradually converges to the origin. It is convenient to take 

�
"S

�
, and


�
�
"S

�
. Due to the characteristics of the sliding mode control, system chattering will

always occur around the balance point. Here a fuzzy set is introduced to minimize this
system chattering phenomenon. Based on the criteria of sliding mode [11], it divides the
sliding variables S

�
and S

�
and control force u(t) into seven fuzzy variables as (1) [PB]:

positive big, (2) [PM]: positive medium, (3) [PS]: positive small, (4) [ZE]: zero, (5) [NB]:
negative big, (6) [NM]: negative medium, (7) [NS]: negative small (see Figure 2). For
simplicity, a triangular-type assignment function is chosen to assign each variable and these
variables are centrally weighted and span over [!6, !5, !4, !3, !2, !1, 0, 1, 2, 3, 4,
5, 6] in 13 stages.
The linguistic control rules of the center of gravity method are used to form a look-up

table as shown in Table 1 [11].
Furthermore, in order to compensate for time delay the system's state-space phase

co-ordinate is shifted corresponding to delay time. This shifted phase co-ordinate is used to
predict the system's real state value. Then, the FSMC controller can calculate the control
force as needed in real time.



Figure 2. Representation of FSMC.

TABLE 1

7�7 fuzzy response table

S
�

Look-up table NB NM NS ZE PS PM PB

NB !1 !0)7 !0)5 !0)1 !0)1 !0)1 0
NM !0)7 !0)5 !0)5 !0)1 !0)1 0 0)1
NS !0)5 !0)5 !0)5 !0)1 0 0)1 0)1

S
�

ZE !0)1 !0)1 !0)1 0 0)1 0)1 0)1
PS !0)1 !0)1 0 0)1 0)5 0)5 0)5
PM !0)1 0 0)1 0)1 0)5 0)5 0)7
PB 0 0)1 0)1 0)1 0)5 0)7 1
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In this case, delay time t
�
will produce phase lag w

�
t
�
. However, control force is calculated

according to the observed feedback before time delay. Without correct calculation to match
the system's needs in real time, the control force will be improper and result in poor control.
In order to design a proper control force, the real time state value X(t) has to be predicted.
Here, the system's phase co-ordinate is rotated counter-clockwisew

�
t
�
degrees of the system

phase angle in order to compensate for phase lag. This phase shift e!ect can be represented
by a transfer matrix ¹, and the sliding function 


�
for the jth mode can be modi"ed as

follows:
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Figure 3. Fuzzy sliding mode control loop.
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The FSMC control loop is shown in Figure 3. The control loop starts when the control
system observes the states x

��
and x

��
of the beam structure for the jth mode. Then it

calculates 

�
by equation (7), 
�

�
by equation (8), and then S

�
"


�
and S

�
"dS

�
/dt . S

�
and

S
�
are fuzzi"ed and assigned to certain fuzzy variables according to the control rules.

A defuzzi"cation process is followed. Finally, an established loop-up table is used to look up
the control force.

4. SIMULATION RESULTS AND DISCUSSION

The Runge}Kutta method is used to solve equation (6) with a numerical tolerance of
10�	 for each step. The system parameters for simulation are shown in Table 2. Based on
the results of numerical simulation, we compare the performance of various control laws,
namely (1) passive control and the FSMC, and (2) the FSMC with phase shift
compensation.

4.1. PASSIVE CONTROL AND FSMC

Without the actuation of servomechanism, i.e., u(t)"0 in equation (2), the system has
passive control only. Responses of the beam structure under passive control and without
control are shown in Figure 4. In this case, the systemwill become unstable without control.
When passive control is employed, the system's amplitude is slightly reduced but cannot be
eliminated. This shows that passive control is not a very good control method.



TABLE 2

Parameters for simulation

Beam span ¸"100 ft
Mass per unit length of beam m"0)3 lb
Bending sti!ness of beam EI"12�10�� lb in�
Control torque location a"10 ft
Sti!ness of control spring k"62)5 kips/in
Length of spring arm l"3 ft
Dynamic load P"20 kips
Velocity of dynamic load <"60 ft/s

Figure 4. Response of beam structure: t
�
"0)1 s; - - - - -, passive control; **, without control.
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Now, the FSMC is applied to actively control the same dynamic beam structure, but the
time delay e!ect is not compensated. For the control system without time delay e!ect,
the responses under passive control and the FSMC are shown in Figure 5(a). It shows that
the FSMC will greatly reduce the system's response in comparison with passive control
when the system has no time delay.
However, when the delay time is increased, the system will become unstable if the time

delay is not compensated. The results are shown in Figure 5(b) in which the time delay is 0)1 s.

4.2. FSMC WITH PHASE SHIFT COMPENSATION

Now, to avoid the failure of the FSMC for the system with time delay e!ect, the FSMC
with phase shift method is used to control the system and the time delay e!ect is
compensated.
Here we compare the performance of the FSMC with phase shift compensation for

di!erent delay times. In Figure 6, the result shows that increase in delay time will enlarge the
response amplitude, while the system remains stable. However, the FSMC with phase shift
compensation can achieve good control for the system with time delay e!ect.



Figure 5. Response of beam structure: (a) t
�
"0 s; - - - - -, passive control; **, FSMC; (b) t

�
"0)1 s; **,

FSMC; - - - - - , FSMC with phase shift compensation.
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It is noted that increase in delay time will reduce the system's performance. Obviously,
the tolerance for delay time is another important characteristic of the FSMC method.
Furthermore, in order to estimate how much the FSMC can do and keep the system in

control, the maximum and averaged bending displacement reduction rates, R
���

and R
��	
,

are chosen for this purpose. They are de"ned as follows:
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Figure 6. Time delay e!ect on dynamic beam system by FSMC with phase shift compensation: - - - - -,
t
�
"0)01 s; **, t

�
"0)01; , t

�
"0)2.
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whereX
���-
����
���

andX
��	-
����
���

represent the system's maximum and averaged responses
without control respectively.
During the loading session, the di!erent reduction rates against time delay are shown in

Figure 7(a) and 7(b). It is noted that increase in delay time will decrease displacement
reduction rates and the system's performance becomes worse. For both the maximum and
average reduction rates, the FSMCwith phase shift compensation achieves better reduction
rates in comparison with the FSMC without phase shift compensation. It shows that the
FSMC with phase shift compensation could e!ectively reduce the displacements of beam
structure with time delay e!ect. The results also show that the FSMC with phase shift
compensation is capable of controlling the system with time delay up to about 0)2 s.
In summary, from the results shown above, it is shown that the FSMC together with

phase shift compensation can enhance the system's robustness against the time delay e!ect.

5. CONCLUSION

The objective of this research is to present a feasible methodology to control a beam
system with time delay e!ect. For this purpose, a simpli"ed state-space model of a dynamic
beam structure is chosen as the control plant. Usually, when the system has time delay
e!ect, an inappropriate control force via typical control laws will result in poor control.
Here, we use the fuzzy sliding mode control to deal with the control system with time

delay e!ect. The FSMC is easy to design and needs little online calculations. In comparison
with a passive control system, the FSMC has better performance especially for systems with
time delay e!ect. The results also show that increase in the system's delay time will reduce
the performance of the FSMC, and the system will become unstable when the time delay is
large. To achieve a better control performance, the phase shift method is applied to
compensate for the system's phase lag caused by the time delay e!ect. The result shows that
the FSMC with phase shift compensation will e!ectively improve the system's tolerance for
dynamic stability.



Figure 7. (a) Maximum beam bending displacement reduction rates versus delay time; (b) Average beam
bending displacement reduction rates versus delay time: **, FSMC with phase shift compensation; - - - - -,
FSMC.
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APPENDIX A: NOMENCLATURE

A system matrix
A

�
, A

�
system matrix for the "rst and the second modes respectively

a distance between servohinge and end of beam
B control coe$cient matrix
B
�
, B

�
control coe$cient matrix of the "rst and second modes respectively

b
�
, b

�
parameters for beam equation of the "rst and second modes respectively

C output coe$cient matrix
C

�
, C

�
output coe$cient matrix of the "rst and second modes respectively

C
�

coe$cient matrix of hyperplane ( j"1, 2)
c
��
, c

��
coe$cient scalar of hyperplane for the jth mode ( j"1, 2)

D disturbance coe$cient matrix
D

�
, D

�
disturbance coe$cient matrix of the "rst and second modes respectively

E external disturbance
E
�
, E

�
external disturbance of the "rst and second modes respectively

e
��
, e

��
the error and error rate function of the state X

�
EI sti!ness of beam
¸ span length of beam
l arm length of servomechanism
M

�
(t) control torque produced by actuator

M
�

the set of hyperplanes ( j"1, 2)
m mass per unit length of beam
R

���
maximum bending displacement reduction rates

R
��	

average bending displacement reduction rates
S sti!ness of spring
S
�

sliding function for the jth mode
S
�

derivative of S
�

¹
�

phase shift matrix for the jth mode ( j"1, 2)
U control force of system
;

�
control force for the jth mode

u(t) displacement of actuator
V velocity of moving load
X state vector of system
X

�
state vector for the jth mode ( j"1, 2)

X
��	-���
���

average displacement under FSMC control
X

��	-
����
���
average displacement without control

X
���-���
���

minimum displacement under FSMC control
X

���-
����
���
minimum displacement without control

X
��

state value of time delay system for the jth mode ( j"1, 2)
x distance to left end of beam
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x
��

displacement of state variable for the jth mode ( j"1, 2)
x
��

velocity of state variable for the jth mode ( j"1, 2)
Y

�
(t) beam displacement for the jth mode ( j"1, 2)

Y	
�
(t) derivative of Y

�
(t) for the jth mode ( j"1, 2)

y(x, t) beam displacement

Greek letters
� damping ratio
� Dirac delta function
�� derivative of �


�

the sliding function of the jth mode ( j"1, 2)

�
�

derivative of 

�� angular frequency, �"(�</¸)

�
�

angular frequency for the jth mode ( j"1, 2)
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